Pattern Evocation and Energy-Momentum Integration of the Double Spherical Pendulum

نویسندگان

  • Jerrold E. Marsden
  • Alan D. Weinstein
چکیده

This thesis explores pattern evocation and energy-momentum integration of the double spherical pendulum. Pattern evocation is a phenomenon where patterns emerge when the ow of a dynamical system is viewed in a frame that rotates relative to the inertial frame. Energy-momentum integration integrates the equations of motion and exactly preserves energy and momentum at each time step. The thesis begins with a summary of the theory on pattern evocation for Hamiltonian systems with symmetry. The result of this theory is that if the motion in the reduced space is periodic, quasiperiodic, or almost periodic, respectively, then in a suitably chosen rotating frame with constant velocity, the motion in the unreduced space is also periodic, quasiperiodic, or almost periodic, respectively. The motion in this rotating frame may have a particular pattern or symmetry. Examples of this theory are demonstrated for the double spherical pendulum. A di erential-algebraic model is created for the double spherical pendulum and is integrated with a publically available simulation package called MEXX. This simulation technique is described followed by a description of an energy-momentum integrator. The thesis concludes with a comparison of the energy-momentum integrator and the MEXX simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Astrojax Pendulum and the N -Body Problem on the Sphere: A study in reduction, variational integration, and pattern evocation

We study the Astrojax Pendulum and the N-body problem on the sphere in the light of Lagrangian reduction theory, variational integrators, and pattern evocation.

متن کامل

The Discrete Hamel’s Formalism and Energy-Momentum Integrators for the n-dimensional Spherical Pendulum

This paper discusses Hamel’s formalism and its applications to structure-preserving integration of the ndimensional spherical pendulum. It utilizes redundant coordinates in order to eliminate multiple charts on the configuration space of the pendulum as well as nonphysical artificial singularities induced by local coordinates, while keeping the minimal possible degree of redundancy and avoiding...

متن کامل

Equivariant Constrained Symplectic Integration

We use recent results on symplectic integration of Hamiltonian systems with constraints to construct symplectic integrators on cotangent bundles of manifolds by embedding the manifold in a linear space. We also prove that these methods are equivariant under cotangent lifts of a symmetry group acting linearly on the ambient space and consequently preserve the corresponding momentum. These result...

متن کامل

Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...

متن کامل

The complex geometry of the spherical pendulum

In this paper we describe the geometry of the energy momentum mapping of the complexified spherical pendulum. For background on the classical spherical pendulum we refer the reader to [4, chpt. IV]. We show that this complex Hamiltonian system is Mumford-Jacobi completely integrable [9, p.3.51–3.53] and admits an analogue of the period lattice [5] and action angle coordinates [4, Apend. D]. Fol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995